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1. Introduction

In 13]. Park discusses notions of strong and weak fairness in the execution of guarded

iterations. These concerns are also considered in [1] and [2]. We show that any "strongly fair"

scheduling algorithm for n processes requires at least n! storage states (i.e. space proportional to

n log n). Similarly, any "weakly fair" scheduling algorithm requires at least n storage states.

Both bounds are optimal.

For our present purposes we may define a scheduler as a transducer A with an input alphabet

of symbols corresponding to the non-empty subsets of {1, ..., n} and output alphabet 1. n}.

It has the property that for each symbol input the generated output symbol is an element of the

corresponding subset. We may regard each input symbol as requests for service from some subset

of n processes and the output given by A as the scheduler's choice of which one of these to serve.

We consider infinite runs of such a scheduler.

A scheduler is

1. stron l fair if each process which requests service infinitely often is served

infinitely often, and

2. weakly fair if each process which requests service all but finitely often is served

infinitely often.

Thus at any time in a strongly (weakly) fair schedule any process will eventually be served if

it requests service infinitely (continuously) from that time. Park's example of a strong schedulei

in [P] keeps the processes in a queue. At each step it serves that. requesting process which is

earliest in the queue and then sends this process to the back of the queue. That this provides

strongly fair scheduling is easy to see since when any process is unsuccessful in its request it

advances one position in the queue. Park expresses disquiet at the implementation overheads for

such a scheduler.

By contrast, he shows a simple economical weakly fair scheduler. A counter with values in

(1, ..., n) is maintained. At each step the counter is incremented modulo n until it reaches the

number of a process requesting service. This process is then served.

We shall show that both of the schedulers given by Park are optimal in their use of storage

space.
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2. Main Results

Theorem I. Any strongly fair scheduler for n processes has at least n! states.

Proof. For each i, let Pi be the set of scheduler states with the property that the next time

process i requests service it will indeed be served.

Lemma 1. For i 7 j, Pi n P, 0.

Proof. An immediate request for service by processes i and j would be an irreconcilable
conflict for any state in Pi n P. 0

Lemma 2. For all i, Pi 7 0.

Proof. Suppose Pi = " Since the initial state is not in Pi, there is some sequence wI of
inputs ending in a request from process i such that process i is not served during w1. Since the

resulting state is also not in Pi, the same reasoning produces a continuation w2 with the same

property. In this way we can show the existence of an infinite sequence of inputs w1 .w2*w3*... in

which i requests service infinitely often but is never served. This contradicts strong fairness. 0
Lemma 3. The set of states Pi is closed under the transitions effected by i-free inputs.

Proof. Immediate from the definition of Pi. 0

The proof of Theorem I now proceeds by induction on n. The result is trivial for n - 1. Let

us suppose the result holds for n-i processes and consider the case of n processes.

With Lemma 2 in mind, consider any &I C Pi. With si as an initial state and allowing only

i-free inputs, we find that we have a strongly fair scheduler for (1, ..., a) - {i}. This follows

from the strong fairness of the original scheduler. By the inductive hypothesis this strongly fair

(n - 1)-scheduler uses at least (n - 1)! states, and by Lemma 3 all these states are in Pi. Hence

1Pi1 -: (n - 1)!. Since this inequality holds for each i, we have, using Lemma 1, that the original
scheduler has at least n! states. 0

Thus Park's strongly fair scheduler is optimal in its storage requirement. Indeed the

naturalness of his queuing structure is supported by an analysis of the proof technique above. In
a natural way we can associate with every permutation of the processes a disjoint non-empty

subset of the scheduler states.

We close with a minor result, analogous to Theorem I.

Theorem UI. Any weakly fair scheduler for n processes has at least a states.
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Proof. Consider the (constant) input sequence in which each process requests service at

every step. If the scheduler has fewer than n states, its resulting ultimately periodic behaviour

has period less than n and so fails to serve some processor. 0
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